Math 217 Fall 2025 Quiz 16 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose A is an $m \times n$ matrix, the *transpose* of A is . . .

Solution: The $n \times m$ matrix A^{T} whose (j,i) entry equals the (i,j) entry of A:

$$(A^{\mathsf{T}})_{ji} = a_{ij} \qquad (1 \le i \le m, \ 1 \le j \le n).$$

Equivalently,

$$(A^{\mathsf{T}})_{ij} = a_{ji} \qquad (1 \le i \le n, \ 1 \le j \le m).$$

(b) Suppose V and W are vector spaces and $T:V\to W$ is a linear transformation. The image of T is . . .

Solution: The set of all vectors in W that are images of vectors in V under T:

$$\operatorname{im} T = \{ T(v) : v \in V \}.$$

This set is a subspace of W, called the *image* of T.

(c) Suppose U is a vector space and $u_1, \ldots, u_n \in U$. The *span* of (u_1, \ldots, u_n) is \ldots

Solution: The set of all finite linear combinations of the u_i :

$$span(u_1, ..., u_n) = \left\{ \sum_{i=1}^n a_i u_i : a_1, ..., a_n \in \mathbb{F} \right\},$$

where \mathbb{F} is the underlying field (e.g., \mathbb{R} or \mathbb{C}).

2. Fix any ordered basis (v_1, \ldots, v_n) for V, and consider the map

$$\phi: \mathbb{R}^n \to V, \qquad \phi\left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}\right) = a_1v_1 + \dots + a_nv_n.$$

(a) Show that ϕ is a linear transformation.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: Let $x = (a_1, \ldots, a_n)^{\mathsf{T}}$ and $y = (b_1, \ldots, b_n)^{\mathsf{T}}$ in \mathbb{R}^n , and $c \in \mathbb{F}$.

$$\phi(x+y) = \sum_{i=1}^{n} (a_i + b_i)v_i = \sum_{i=1}^{n} a_i v_i + \sum_{i=1}^{n} b_i v_i = \phi(x) + \phi(y),$$

$$\phi(cx) = \sum_{i=1}^{n} (c \, a_i) v_i = c \sum_{i=1}^{n} a_i v_i = c \, \phi(x).$$

Thus ϕ is linear.

(b) Show that ϕ is an isomorphism.

Solution: Since (v_1, \ldots, v_n) is a basis, every $v \in V$ has a unique coordinate vector $(a_1, \ldots, a_n)^\mathsf{T}$ with $v = \sum_{i=1}^n a_i v_i$. This shows:

- Surjectivity: For any $v \in V$, choose its coordinates a_i and get $\phi((a_1, \ldots, a_n)^{\mathsf{T}}) = v$.
- Injectivity: If $\phi(x) = \phi(y)$, then $\sum_{i=1}^{n} (a_i b_i) v_i = 0$. By linear independence of the basis, $a_i b_i = 0$ for all i, so x = y.

Therefore ϕ is bijective and linear, hence an isomorphism.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) If V is a vector space and S is a finite list of vectors in V such that $\vec{0}$ is on the list, then S is linearly dependent.

Solution: TRUE. If 0_V is in the list, take coefficients 1 for that entry and 0 for all others; then a nontrivial linear combination equals 0_V . Hence the list is linearly dependent.

(b) Any four vectors in \mathbb{R}^3 are linearly dependent.

Solution: TRUE. The dimension of \mathbb{R}^3 is 3, so any list with more than 3 vectors is linearly dependent (no more than dim many can be linearly independent).